Maximizing Returns through MRTN A Farmer's Guide

Emerson Nafziger Crop Sciences

College of ACES

Laura Gentry IL Corn Growers Association

Before we talk about nitrogen rate:

- High P and K fertilizer prices and possible supply issues bring questions about applying P/K this fall or waiting until??
- Price and supply are also bringing pressure to apply anhydrous ammonia before soil temperatures drop to below 50 this fall
- See October 6, 2021
 Crop Central article

 (on farmdoc) for more
 on these issues

LINOIS

	Our Sites: farmdoo					
farmdoc Market Prices Section	ons Tools Publications V	Vebinars/IFES Sponsors/Donate About Us				
The Bulletin Fertilizer Decisions, Fall 2021						
	Emerson Nafziger Department of Crop Sciences University of Illinois October 6, 2021					

Why not just use expected yield (yield goal) to set N rate?

In 1990s it became obvious that yield-goal-based system in place since 1970s was no longer adequate:

Yield goal?

Yield and the N rate it took to get to yield were not correlated across a lot of trials

How's that possible? Think soil N

The result: We can't predict the best N rate even if we KNOW what the yield will be

Why is (fertilizer) N rate so "difficult"? Tough to predict yield/N need AND soil N supply

ILLINOIS

Producing 1 bu of grain requires ~1 lb of N $^{2}/_{3}$ of the N is in the grain at maturity

Averaged across trials:

- ~1/2 crop's N requirement
- comes from the soil

350

Ranges from <5% to >90%

Maximum Return To Nitrogen (MRTN)

The N rate that maximizes return to N at a certain ratio of N:Corn prices

AND

across a set of N response trials

In Illinois, our sets of response trials are northern, central, and southern Illinois

The MRTN

The **"economic optimum" N rate (EONR)** is the rate that adds just enough yield to pay for the last lb of N applied

N: \$0.50/pound

Corn: \$5.00/bushel

The last bushel of corn produced by the EONR pays for 10 lb of N

Thanks to NREC and IFCA, we have by far the best N trial database of any state

ILLINOIS

N response curves N responses subset, S-C Central Illinois

I ILLINOIS

Return to N

I ILLINOIS

Net RTN, 200 S-C trials, Central Illinois

Convert yield responses to "return to N" (RTN) responses

- Subtract yield without N in each trial
- Convert yield response to \$ response

Gross return yield (increase) x price/bu

N cost

N rate x cost/lb N

RTN

= gross return minus N cost

Final step

Average all RTN curves

- The high point of the average curve = MRTN
- The shape of each curve changes as the N:corn price ratio changes:
 - Lower corn/higher N price moves curves to the left (lower MRTN)
 - Higher corn/lower N price moves curve to the right (higher MRTN)

Average RTN across 200 N rate trials The high point of the avg curve = MRTN

IILLINOIS

One more thing: Ranges

- The RTN curve is relatively flat on top: RTN is not very sensitive to N rate around the MRTN
- So we added a range of rates within which the RTN is within \$1/acre of the RTN at the MRTN (N rate)
- Range is typically ~15 lb N on each side of the MRTN

Points about the MRTN It's based entirely on N response data

- More N response data (sites) are better, but we don't know the number of sites needed for the "best" prediction
- Sites with unusual weather can produce unusual responses: we include these unless there's a good reason not to
- Data from sites with similar soil (texture, depth, topography, drainage) will make a better prediction for that soil

More about the MRTN

Having it based on data from previous trials means that it can't give a perfect prediction for a given field in a given year:

it is, though, the **BEST GUESS** we have

Finding best N rates is not a "contest":

N responses are not predictable, and we either use results over a lot of trials or we make it up (e.g., "just use plenty of N")

How "imperfect" is the MRTN? 16 Soy-Corn Trials, Central IL, 2020 We ca

We can assess any set of response data against the predicted MRTN from previous trials

The MRTN based only on only these 16 sites is about 23 lb higher than the prior MRTN

Adding these data into the MRTN database increased the (2021) MRTN slightly

farmdoc

Change in Illinois MRTN for corn following soybean

Illinois corn N rate calculator output for Fall 2023 Numbers below at N:corn price ratio of 1:10 (N \$0.48/lb; corn \$4.80/bu

Central IL soy-corn, 284 trials N:corn price ratio = 0.1 (\$.50/\$5.00)

Cumulative

"Knocks" on the MRTN

It's "one size fits all" without taking into account soils, weather, yields, etc.

- MRTN will (by definition) work better for fields similar to those in the database
- Even knowing yield doesn't help set N rate
- Weather and its effects are no more predictable than yield
- N loss can be modeled/measured, but is less important in most fields than root issues (growth pattern or waterlogging)
- The inability to estimate soil N contribution early in the season is a major issue, and is likely to remain so

Changing MRTN with changing prices, Fall 2023 Corn at \$5.00; N price as indicated

IL	Rotatio n	MRTN at N price, \$/lb			
Region		\$0.30	\$0.40	\$0.50	
North	Soy-C	200	189	178	
	Corn-C	235	218	205	
Central	Soy-C	200	189	181	
	Corn-C	223	209	200	
South	Soy-C	225	211	200	
	Corn-C	225	211	197	

Fall 2023 (for 2024) NH₃ \$700/ton Corn \$5.00/bu N:C price ratio 0.085 CIL SC MRTN = 187 lb N/ac

farmdoc

If using more than one source, use the price of the source used for the last (rate-finishing) application to set total rate

IILLINOIS

"Knocks" on the MRTN Yields of 250+ bushels surely need more than 185 lb N Hundreds of N response curves say otherwise: the soil supplies on average about half of the N taken up by the crop Better crop growing conditions often increase the supply of soil N

N response curves show responses diminish as N rates increase: It takes about 10 lb of N to add the last bushel up to the yield at the EONR

Today's hybrids grow faster and are better at taking up nutrients and water than older hybrids

- Soil-supplied N is a more consistent part of the crop's N supply
- There is less need for high fertilizer N rates, even when yields are high

Nitrogen and Conservation

Laura Gentry

PCM

precisionconservation.org

Precision Conservation Management

Positioning farmers to benefit from conservation outcomes

Precision Conservation Management

Understand how conservation practices impact farm net returns

Address water quality concerns. Prevent agricultural regulation

Position farmers to benefit from positive conservation outcomes

Position farmers to benefit from positive conservation outcomes

1-on-1 technical support

Data collection platform

Individualized yearly RAAP report

- Economic cost tables
- Environmental assessments
- Local practice comparisons

\$750 participation payment

Exclusive program offers cost share, other practice assistance

Networking & education opportunities

Illinois Nutrient Loss Reduction Strategy

Goal: 45% Reduction in **Total N & Total P** Losses by **2035 Interim:** 15% Reduction in NO₃-N & 25% Reduction in Total P by 2025

https://epa.illinois.gov/topics/water-quality/watershed-management/excess-nutrients/nutrient-loss-reduction-strategy.html

IILLINOIS

Clay Bess PCM Operation Manager cbess@precisionconservation.org 309-445-0278

Lou Liva

PCM Specialist Rock Island, Mercer, Knox, and Henry Counties <u>lliva@precisionconservation.org</u> 309-391-2346

Andrea Kohring PCM Specialist

Monroe, St. Clair, Madison, Clinton, and Washington Counties <u>akohring@precisionconservation.org</u> 309-319-8809

Darren Cudaback

PCM Specialist Select counties in Nebraska <u>dcudaback@precisionconservation.org</u> 308-216-1153

Andrew Hiser

PCM Specialist Christian, Macoupin, Sangamon Counties ahister@precisionconservation.org 309-307-7520

Chris Stewart

PCM Specialist Select counties in Kentucky <u>cstewart@precisionconservation.org</u> 270-205-2258

ROCK ISLAN

MERCER

LIVINGSTON

COLES

MCLEAN

Alexa Rutherford

PCM Specialist Ogle, Lee, DeKalb, Boone, and Winnebago Counties <u>arutherford@precisionconservation.org</u> 309-336-9779

Aidan Walton

PCM Specialist Ford, Livingston, McLean, Tazewell, and Woodford Counties <u>awalton@precisionconservation.org</u> 309-391-2345

Jonah Cooley

PCM Specialist Piatt, DeWitt, and Champaign Counties jcooley@precisionconservation.org 309-831-7558

Jacob Gard

PCM Specialist Coles, Douglas, Edgar, and Vermilion Counties jgard@precisionconservation.org 309-200-6180

Leyton Brown

PCM Specialist Champaign, Vermilion and Edgar Counties Ibrown@precisionconservation.org 309-307-7515

I ILLINOIS

Check us out online: www.precisionconservation.org

Annual Data Booklet in PRAIRIE FARMER

Net Financial Returns and N Fertilizer Timing Corn, Hi SPR 2015-22 Average Values

		Mostly	Mostly	50% Pre/	
	>40% Fall	Preplant	Sidedress	50% Sidedress	3-way Split
NUE (lb N/bu grain)	0.98	0.92	0.91	0.94	0.92
# fields	1,876	1,126	1,189	367	477
Yield per acre	222	218	221	220	224
Gross Revenue	\$941	\$918	\$933	\$929	\$948
N Fertilizer	\$93	\$87	\$86	\$96	\$92
Other Direct Costs*	\$335	\$308	\$321	\$324	\$348
Total Direct Costs*	\$428	\$395	\$407	\$420	\$440
Field Work	\$16	\$15	\$16	\$15	\$18
Other Power Costs**	\$102	\$94	\$100	\$100	\$100
Total Power Costs	\$118	\$109	\$116	\$115	\$118
Overhead Costs	\$38	\$38	\$38	\$38	\$38
Total Non-land Costs	\$585	\$542	\$561	\$573	\$596
Operator & Land Return	\$356	\$376	\$371	\$356	\$352

Illinois 2022 MRTN Recommendation in pounds of N applied^{1,2}

Corn-Following-Soybeans Corn-Following-Corn

North

Central

South

farmdoc

I ILLINOIS ²MRT

250

¹Taken from Corn Nitrogen Rate Calculator (http://cornnratecalc.org)
 ²MRTNs determined with a N:corn price ratio of 1:10 (N \$0.48/lb; corn \$4.80/bu)

Corn Yield, High SPR, N Rate, Pounds per Acre

Operator and Land Returns Corn, High Soil Productivity Rating (SPR)

GHG Emissions in metric tons CO2e/acre

< 150 151 to 175 176 to 200 201 to 225 > 225
N Rate in Pounds per Acre

IILLINOIS

What's next for improving confidence in MRTN?

Many smaller trials more easily (and cheaply) done by producers, to produce data that will show that using the MRTN will usually meet crop needs:

- Two rates the rate used in a field, and a rate lower or higher resulting in one rate in the MRTN range and a rate 50-60 lb higher
- The "different" rate in (two?) strips through the field wide enough to allow use of normal equipment and for two combine passes
- YM yields from each rate, with two passes in rate strip and on each side of rate strips
- On different soils within and across (many) fields

What's next for improving confidence in MRTN?

- Sensing & yield monitor data along with weather and soil information should allow us to "train" a prediction model to improve on in-season N mgt
- Dan Schaefer at IFCA will lead the field phase, with cooperation from the Precision Conservation Management program, retailers, and others

Dan Schaefer

Illinois Fertilizer & Chemical Association

N Rate Verification Trials:

- Project in its early years
- Funded by NREC

I ILLINOIS

• Dan Schaefer (IFCA) will coordinate

This, in **500**(?) IL fields each year Y1 Y2 Y3 Y4 185 lb N: whole field rate 240 in strip

Illinois two-rate N trial results from 2022

Change from medium nitrogen rate (Average of 185 lb N/acre) to high nitrogen rate (average of 242 lb N/acre) Using higher rates added 3 bushels of yield and produced a net loss of \$30 per acre

■ Yield response, bu ■ \$ response (\$0.80/lb N; \$5.25/bu)

A BIG question:

- How can anyone really know whether the N rate used was too low, about right, or too much?
- Providing more N than the crop needs seldom leaves visible clues: the only way to know if too much N was used is to do a comparison trial with (at least two) different rates in the field
- Applying somewhat less fertilizer N than the crop needs often doesn't produce visible signs of deficiency (except in our imagination)
 - Water in low spots → N-deficient corn, mostly due to root issues not lack of N
 - Corn without N fertilizer is often dark green early; uniform deficiency across entire fields is very rare in higher-OM soils with >150 lb N applied

Precision Conservation Management

N Rate Reduction Incentives through IL NREC and USDA Climate Smart Grants

College of Agricultural, Consumer & Environmental Sciences

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

farmdoc

MRTN On-Farm Strip Validation Trial

PCM Incentive Programs

- Payments coming from USDA and PepsiCo/Walmart
- PepsiCo and Walmart sharing claim on the carbon asset

United States Department of Agriculture

Learn more at www.precisionconservation.org

ABOUT US * NEWS * PARTNERS * LOG-IN COMING SOON - QUICK STATS EVENTS

Increasing Farm Incomes and

Environmental Outcomes

Ioin Now

An Innovative Farm Conservation Service Program serving Illinois, Nebraska and Kentucky

Questions? Contact Us

•

Field Level Farm Data

Farm Data – Farmers collect detailed field data using the *free* Farmer Portal tool

Services – PCM provides analysis & one-on-one consultations with conservation experts

Data Security Guarantee – Individual farm data is protected [not shared] unless the farmer chooses to do so

Read More...

0

Data Analysis for Business Decision Support

Projections & Reports – Based on the unbiased, detailed conservation practices of Real Farmers

Results – Improved economic performance & measurable improvements in conservation practices

Read More...

Conservation, Government Program & Supply Chain Support

Data – Supporting improvement in precision farming practices

Farmer Access – To projects & partners that support their conservation efforts

Read More..

Environmental Impact & Measureable Improvements

Measurable Improvements – For Farmers, Supply Chain Members, Consumers & Legislators

End Goal – Continue to move the needle to improve water quality & soil health

Read More

farmdoc Sponsors

TIAA Center for Farmland Research

farmdoc Educational Partners

College of Agricultural, Consumer & Environmental Sciences

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

Department of Agricultural & Consumer Economics

Extension

Thank You for joining us! Please submit your questions

Visit us at farmdocDAILY .Illinois.edu

Subscribe for Latest News Updates

ILLINOIS

Agricultural & Consumer Economics college of agricultural, consumer & environmental sciences

You Tube

For the webinar archives and 5-minute farmdoc Subscribe to our channel YouTube.com/@farmdoc

